Solvent Extraction of Sodium Picrate with 15-Crown-5 into Carbon Tetrachloride. The Determination of the Dimer-formation Constant of a Crown Ether-Univalent Metal Salt 1 : 1 : 1 Complex

YASUYUKI TAKEDA* and CHIHIRO TAKAGI

Department of Chemistry, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263, Japan.

(Received: 7 September 1993; in final form: 28 December 1993)

Abstract. The theory is derived to determine the dimer-formation constant, K_2 , of a crown ethermetal salt 1 : 1 : 1 complex in organic solvents of low dielectric constant by solvent extraction. The theoretical predictions are verified experimentally by extraction of sodium picrate (NaA) with 15-crown-5 (15C5) into carbon tetrachloride. All the experiments were conducted at 25°C. The log K_2 value of the Na(15C5)A complex in carbon tetrachloride has been determined to be 4.05 \pm 0.11. Moreover, the partition constant of the complex is calculated.

Key words: Solvent extraction, determination of dimer-formation constant, 15-crown-5, sodium picrate, carbon tetrachloride.

1. Introduction

It is well-known that 15-crown-5 (15C5) forms a 1 : 1 : 1 complex with sodium picrate (NaA) in organic solvents of low dielectric constant [1]. But no study has been reported on the dimer formation of Na(15C5)A in the solvents.

This paper presents the theory to determine the dimer-formation constant, K_2 , of a crown ether-metal salt 1 : 1 : 1 complex in organic solvents of low dielectric constant by solvent extraction. The theoretical predictions are verified experimentally by extraction of NaA with 15C5 into carbon tetrachloride. The log K_2 value of Na(15C5)A in carbon tetrachloride has been determined to be 4.05 ± 0.11 at 25°C.

2. Experimental

2.1. MATERIALS

15-Crown-5 (Nisso Co., Ltd.) was purified by distillation under vacuum (bp 167–168°C, 19 mmHg (1 mmHg \approx 133.322 Pa)). Picric acid and sodium hydroxide

^{*} Author for correspondence.

were of analytical grade. Analytical grade carbon tetrachloride, which was purified by distillation, was washed four times with deionized water prior to use.

2.2. EXTRACTION OF SODIUM PICRATE WITH 15C5

A 10–13 mL portion of an organic solution of 15C5 $(2.0 \times 10^{-5} - 1.3 \times 10^{-2} \text{ M};$ 1 M = 1 mol dm⁻³) and an equal volume of an aqueous solution of NaOH ((2.0 – 4.2) × 10⁻² M) and picric acid ((3.2 – 4.7) × 10⁻³ M) in a stoppered glass tube were shaken in a thermostated water bath at 25 ± 0.2°C for 3 h and centrifuged. Extractions were conducted at pH 10.9–11.8. The picrate in the organic phase was back extracted into 0.01 M NaOH aqueous solution. The picrate concentration was determined spectrophotometrically at 356 nm ($\varepsilon = 1.44 \times 10^4 \text{ cm}^{-1} \text{ M}^{-1}$).

3. Theory, Results, and Discussion

In an equilibrium between an aqueous phase of sodium picrate (NaA) and an organic phase of 15C5(L), the equilibrium constants are defined as

$$K_{\text{ex}} = [\text{NaLA}]_o / [\text{Na}^+] [L]_o [A^-], \tag{1}$$

$$K_{D,L} = [L]_o / [L] \quad (K_{D,L} = 6.2 \times 10^{-2} \text{ at } 25^{\circ} \text{C [2]}),$$
 (2)

$$K_{\rm ML} = [{\rm NaL}^+]/[{\rm Na}^+][L] \quad (K_{\rm ML} = 5.0 \text{ at } 25^{\circ}{\rm C} \ [3]),$$
 (3)

$$K_{\text{MLA}} = [\text{NaLA}]/[\text{NaL}^+] [A^-], \tag{4}$$

$$K_{D,\mathrm{MLA}} = [\mathrm{NaLA}]_o / [\mathrm{NaLA}], \tag{5}$$

$$K_{\rm MA} = [{\rm NaA}]/[{\rm Na^+}] [A^-] \quad (K_{\rm MA} = 24 \text{ at } 25^{\circ}{\rm C} \ [4]),$$
 (6)

$$K_2 = [(\text{NaLA})_2]_o / [\text{NaLA}]_o^2 , \qquad (7)$$

where the subscript 'o' and the lack of subscript denote the organic and the aqueous phase, respectively. From the low dielectric constant (ε_r) of carbon tetrachloride, it has been assumed that the dissociation of NaLA into NaL⁺ and A^- in the organic phase is negligible.

Under very basic conditions (pH > 11), mass balances are as follows;

$$[Na]_t = [Na^+] + [NaL^+] + [NaA] + [NaLA] + [NaLA]_o + 2[(NaLA)_2]_o, \quad (8)$$

$$[L]_t = [L] + [L]_o + [NaL^+] + [NaLA] + [NaLA]_o + 2[(NaLA)_2]_o,$$
(9)

$$[HA]_t = [A^-] + [NaA] + [NaLA] + [NaLA]_o + 2[(NaLA)_2]_o,$$
(10)

the subscript 't' designating the total concentration. Equations (11), (12) and (13) are derived from Equations (8), (9), and (10);

$$a([L]_o[A^-])^2[\mathbf{Na^+}]^2 + \{1 + K_{\mathbf{MA}}[A^-] + (b + c[A^-])[L]_o\} [\mathbf{Na^+}] - [\mathbf{Na}]_t = 0,$$
(11)

$$a([Na^+] [A^-])^2 [L]_o^2 + \{d + (b + c[A^-]) [Na^+]\} [L]_o$$
$$-[L]_t = 0, \qquad (12)$$

$$a([\mathrm{Na}^+][L]_o)^2 [A^-]^2 + \{1 + (K_{\mathrm{MA}} + c[L]_o) [\mathrm{Na}^+]\} [A^-]$$

$$-[\mathrm{HA}]_t = 0 , \qquad (13)$$

where $a = 2K_2K_{ex}^2$, $b = K_{D,L}^{-1}K_{ML}$, $c = K_{D,L}^{-1}K_{ML}K_{MLA} + K_{ex}$, and $d = 1 + K_{D,L}^{-1}$.

The distribution ratio (D) of sodium is represented by

$$D_{\rm M} = \{ [{\rm NaLA}]_o + 2[({\rm NaLA})_2]_o \}$$

$$/([{\rm Na}^+] + [{\rm NaA}] + [{\rm NaL}^+] + [{\rm NaLA}]).$$
(14)

When $[Na^+] \gg [NaA] + [NaL^+] + [NaLA]$ and $[NaLA]_o \gg 2[(NaLA)_2]_o$, Equation (14) is transformed into

$$D_{\rm M} = K_{\rm ex}[L]_o[A^-] \,. \tag{15}$$

As a first approximation, the $[L]_o$ and $[A^-]$ values of Equation (15) are calculated from Equations (16) and (17), respectively:

$$[L]_o = ([L]_t - [NaLA]_o)/(d + b[Na^+]), \qquad (16)$$

$$[A^-] = [\mathrm{HA}]_t - [\mathrm{NaLA}]_o , \qquad (17)$$

where $[Na^+]$ (first approximate value) = $[Na]_t - [NaLA]_o$. Plots of log $(D_M/[A^-])$ vs. log $[L]_o$ always give a straight line with a slope of 1 (Figure 1). This indicates that the 15C5 forms a 1 : 1 complex with the Na⁺ ion under these experimental conditions [5] and that the above assumptions are valid. The actual $[Na^+]$, $[L]_o$, and $[A^-]$ values are calculated from Equations (18), (19), and (20), respectively, by a successive approximation method;

$$[Na^+] = ([Na]_t - [NaLA]_o) / \{1 + b[L]_o + (K_{MA} + e[L]_o) [A^-]\},$$
(18)

$$[L]_o = ([L]_t - [\text{NaLA}]_o) / \{d + (b + e[A^-]) [\text{Na}^+]\},$$
(19)

$$[A^{-}] = ([HA]_t - [NaLA]_o) / \{1 + (K_{MA} + e[L]_o) [Na^+]\},$$
(20)

Fig. 1. log $(D_M/[A^-])$ vs. log $[L]_o$ plots for the 15C5/sodium picrate/CCl₄ system.

where $e = K_{D,L}^{-1} K_{ML} K_{MLA}$ and $K_{MLA} = 1.2_3 \times 10^4$ [2]. The actual log K_{ex} value is determined to be 4.05 ± 0.11. From the equation $K_{ex} = K_{D,L}^{-1} K_{ML} K_{MLA} K_{D,MLA}$, the log $K_{D,MLA}$ value is calculated to be -1.94.

When $[Na^+] \gg [NaA] + [NaL^+] + [NaLA]$ and $2[(NaLA)_2]_o \gg [NaLA]_o$, Equation (14) is transformed into

$$D_M = 2K_2 K_{\rm ex}^2 [{\rm Na}^+] [L]_o^2 [A^-]^2 .$$
⁽²¹⁾

As a first approximation, the $[Na^+]$, $[A^-]$, and $[L]_o$ values of Equation (21) are calculated from Equations (22), (23), and (24), respectively;

$$[Na^{+}] = [Na]_{t} - 2[(NaLA)_{2}]_{o}, \qquad (22)$$

$$e[Na^{+}] (1 + K_{MA}[Na^{+}]) [A^{-}]^{2} + \{(d + b[Na^{+}]) (1 + K_{MA}[Na^{+}]) + e[Na^{+}] ([L]_{t} - [HA]_{t})\} [A^{-}] - \{[HA]_{t} - 2[(NaLA)_{2}]_{o}\} (d + b[Na^{+}]) = 0 \qquad (23)$$

$$[L]_o = \{ [L]_t - 2[(\text{NaLA})_2]_o \} / \{ d + (b + e[A^-]) [\text{Na}^+] \}$$
(24)

Plots of log $(D_M/[\text{Na}^+][A^-]^2)$ vs. log $[L]_o$ always show a straight line with a slope of 2 (Figure 2). This indicates that the dimer (NaLA)₂ is formed

Fig. 2. $\log (D_M / [Na^+] [A^-]^2)$ vs. $\log [L]_o$ plots for the 15C5/sodium picrate/CCl₄ system.

in the carbon tetrachloride under these experimental conditions [6] and that the above assumptions are valid. The first approximate K_2 value is calculated from Equation (1), (25), and (7),

$$[Na]_{o,t} = [NaLA]_o + 2[(NaLA)_2]_o, \qquad (25)$$

where $[Na]_{o,t}$ refers to the total concentration of sodium in the organic phase. The actual log K_2 value is calculated to be 4.05 ± 0.11 from Equations (1), (7), (11), (12), (13), and (25) by a successive approximation method.

References

- 1. Y. Takeda: 'The Solvent Extraction of Metal Ions by Crown Compounds, Host Guest Complex Chemistry III, Topics', in Current Chemistry, F. Vögtle and E. Weber (eds.), Vol. 121, Chap. 1, Springer-Verlag, Berlin, 1984, pp. 1-38.
- 2. Y. Takeda and C. Takagi: Bull. Chem. Soc. Jpn. 67 (1994) (in press).
- 3. R.M. Izatt, R.E. Terry, B.L. Haymore, L.D. Hansen, N.K. Dalley, A.G. Avondet, and J.J. Christensen: J. Am. Chem. Soc. 98, 7620 (1976).

- 4. M. Yamane, T. Iwachido, and K. Tōei: *Bull. Chem. Soc. Jpn.* **44**, 745 (1971). 5. $[L]_t$ 3.8 × 10⁻⁴ 4.0 × 10⁻³ M; [Na]_t 4.0 × 10⁻² M; [HA]_t (4.0 4.6) × 10⁻³ M. 6. $[L]_t$ 4.1 × 10⁻³ 1.4 × 10⁻² M; [Na]_t 4.0 × 10⁻² M; [HA]_t (4.0 4.6) × 10⁻³ M.